§ Смешанные числа. Целая часть дроби. Правильные и неправильные дроби

Основное свойство дроби

Дроби a/b и c/d называются равными, если ad = bc.

Из этого определения следует, что одну и ту же дробь можно записать по-разному. Например, 1/2 = 2/4, поскольку 1 · 4 = 2 · 2. Разумеется, существует множество дробей, которые не равны друг другу. Например, 1/3 ≠ 5/4, поскольку 1 · 4 ≠ 3 · 5.

Возникает резонный вопрос: как найти все дроби, равные данной? Ответ дадим в форме определения:

Основное свойство дроби — числитель и знаменатель можно умножать на одно и то же число, отличное от нуля. При этом получится дробь, равная данной.

Примеры:

Это очень важное свойство — запомните его. С помощ

Это очень важное свойство — запомните его. С помощью основного свойства дроби можно упрощать и сокращать многие выражения. В будущем оно постоянно будет «всплывать» в виде различных свойств и теорем.

Видео

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения Умножаем числитель первой дроби на числитель второ.

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

Получили ответ . Желательно сократить данную дробь

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение  можно понимать, как взятие  пиццы от по

Выражение  можно понимать, как взятие  пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала ну

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

И взять от этих трех кусочков два:

У нас получится  пиццы. Вспомните, как выглядит пи

У нас получится  пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же разме

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения  равно 

Пример 2. Найти значение выражения

Пример 2. Найти значение выражения Умножаем числитель первой дроби на числитель второ

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения 

Пример 3. Найти значение выражения Умножаем числитель первой дроби на числитель второ

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хор

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Вычитание дробей

Эта операция проводится аналогично сложению. Чтобы вычесть две дроби с одинаковыми знаменателями, нужно найти разность их числителей, а знаменатель оставить тем же.

Пример:

7/9 — 2/9 = (7-2) / 9 = 5/9

Задание:

Выполни вычитание дробей с одинаковыми знаменателями:

Для дробей с разными знаменателями также придется

Для дробей с разными знаменателями также придется найти наименьшее общее кратное и дополнительные множители. Затем, по аналогии со сложением, произвести вычитание.

Пример:

6/7 — 8/10 = (6*10-8*7) / 70 = (60-56) / 70 = 4/70

Задание:

Выполни вычитание дробей с разными знаменателями:

Деление числа на дробь

Правило деления числа на дробь такое же, как и правило деления дроби на число.

Чтобы разделить число на дробь, нужно умножить это число на дробь, обратную делителю.

Например, разделим число 1 на Чтобы разделить число 1  на , нужно это число 1  у.

Чтобы разделить число 1 на 1, нужно это число 1 умножить на дробь, обратную дроби . А обратная дроби  это дробь 

Выражение  можно понимать, как определение количес

Выражение  можно понимать, как определение количества половин в одной целой пицце. Допустим, имеется одна целая пицца:

Если зададим вопрос «сколько раз половина сод

Если зададим вопрос «сколько раз половина содержится в этой пицце», то ответом будет 2. Действительно, половина содержится в одной целой пицце два раза

Пример 2. Найти значение выражение 

Пример 2. Найти значение выражение Умножим число 2 на дробь, обратную делителю. А обр

Умножим число 2 на дробь, обратную делителю. А обратная делителю дробь это дробь 

Допустим, у нас имеются две целые пиццы:

Допустим, у нас имеются две целые пиццы:

Если зададим вопрос «сколько раз половина сод

Если зададим вопрос «сколько раз половина содержится в двух пиццах», то ответом будет 4. Действительно, половина содержится в двух пиццах четыре раза:

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

Арифметические действия с обыкновенными дробями

Сложение и вычитание дробей

При сложении (вычитании) дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель. Полученную дробь, если возможно, сокращают и выделяют целую часть.

При сложении (вычитании) дробей с разными знаменателями нужно предварительно привести эти дроби к наименьшему общему знаменателю, затем  сложить (вычесть) полученные дроби, используя правило сложения (вычитания) дробей с одинаковыми знаменателями.

Особенно надо быть внимательным при сложении (вычи

Особенно надо быть внимательным при сложении (вычитании) с участием смешанных чисел!

Общий случай сложения (вычитания) дробей.

Общий случай сложения (вычитания) дробей.

 Умножение дробей

 Умножение дробей

  1. Произведение двух дробей a/b и c/d равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей: При умножении чисел, состоящих из целой и дробной
  2. При умножении чисел, состоящих из целой и дробной частей, их предварительно представляют в виде неправильных дробей, а затем умножают согласно п. 1.

 Деление дробей

 Деление дробей

Два числа называются взаимно обратными, если их произведение равно 1, то есть дроби вида a/b и b/a являются взаимно обратными. Например 1/3 и 3. Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное к делителю.

При делении чисел, состоящих из целой и дробной ча

При делении чисел, состоящих из целой и дробной части, нужно предварительно представить их в виде неправильной дроби.

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

При сложении и вычитании дробей с разными знаменат

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

Вот, что делать:

  1. Найдем наименьшее общее кратное для определения единого делителя. Для этого запишем в столбик числа, которые в сумме

    Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

    НОК (15, 18) = 3 * 2 * 3 * 5 = 90

    НОК (15, 18) = 3 * 2 * 3 * 5 = 90

  2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:

    90 : 15 = 6,

    90 : 18 = 5.

    Полученные числа запишем справа сверху над числителем.

    Воспользуемся одним из основных свойств дробей: пе
  3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению. Проверим полученный результат: 	 		если делимое бо
  4. Проверим полученный результат:
    • если делимое больше делителя, нужно преобразовать в смешанное число;
    • если есть что сократить, нужно выполнить сокращение.

Ход решения одной строкой:

Сложение или вычитание смешанных чисел можно приве

Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

  1. Сложить целые части.
  2. Сложить дробные части. Необходимо приводить к общему, если знаменатели ра

    Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

  3. Суммировать полученные результаты.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Алгоритм превращения

Переводить неправильную дробь в правильную или выполнять обратную операцию просто, если следовать алгоритму. Так как сделать это напрямую нельзя, то фактически получится преобразование в запись, содержащую целую и дробную часть.

Превратить неправильное выражение в смешанное можно по следующему алгоритму:

  • упростить дробное отношение;
  • выполнить умножение целой части на делитель дробной;
  • сложить полученное произведение с числителем;
  • сумму записать в делимое преобразованного выражения, а знаменатель оставить исходным.

Это упрощённый способ, быстро позволяющий выполнить перевод числа из одной формы в другую. Математическое равенство, описывающее это правило, будет выглядеть так: n a/b = ((n * b) + a)/b.

Чтобы преобразовать дробь по всем правилам, нужно сделать следующее. Так как смешанное отношение, по сути, является суммой целого и части, понадобится просто выполнить сложение. Для этого первое слагаемое представляют как неправильную дробь. Сделать это можно, разделив целое на единицу. Затем действуют по правилу сложения дробей, то есть находят общий знаменатель, дополнительные множители, выполняют складывание в числителе: n a/b = n/1 + a/b = ((n *b) + a)/b.

Из неправильной формы записи получить обычную дробь можно также через смешанную. Другими словами, представить выражение как сумму натурального числа и правильного отношения. Для этого необходимо выполнить 3 шага:

  • разделить делимое на делитель;
  • полученный остаток записать в числитель, а в знаменатель поставить исходное число, стоящее в делителе;
  • частное приписать к выражению в виде целой доли.

На самом деле выполнять деление числителя на знаменатель часто довольно сложно, поэтому поступают следующим образом. Делимое представляют в виде суммы дробей, но таким образом, чтобы деление одной из них можно было выполнить без остатка, то есть, m / n = (k + c) / n = k / n + c / n. Где целое число k / n, а c / n правильная дробь.

Нужно отметить, что некоторые выражения можно превращать в другую форму, не записывая поочерёдно действия, а выполняя все преобразования в уме. Но на начальном этапе рекомендуется весь процесс расписывать пошагово, пока не будет получен необходимый опыт. А только уже после переходить к переводу в уме.

Популярное

                                        Навыки

Навыки 15 декабря 2019

                                        Математика

Математика 26 августа 2019 Найди закономерность Закономерность — это регулярные устойчивые взаимосвязи в количествах, свойствах и явлениях объектов. В математической закономерности нужно найти алгоритм, согласно которому в цепочке чисел происходит их повторение, изменение или замещение в соответствии с установленным правилом.

                                        Любовь к у

Любовь к учебе 6 сентября 2019 Как решать ребусы? Разгадывание ребусов – отличное времяпровождение для любителей всевозможных головоломок и загадок. Это захватывающий процесс, суть которого заключается в том, чтобы расшифровать слово, фразу или предложение с помощью картинок и символов-подсказок: цифр, букв, запятых и прочих знаков.

Теги